日韩A∨无码成人精品国产,激情A片久久久久久久,无码天堂va亚洲va在线va免费无码又爽又刺激高潮虎虎视频,伊人无码精品久久一区二区,婷婷激情五月一区二区三区播放中美女 赤裸 一区二区三区,精品亚洲成A人片在线观看少妇,亚洲欧美综合国产不卡,国产精品亚洲а∨天堂免

News
Company News
Media Reports
Published Paper

Published Paper

  • 2024

    Xue N., Hong D., Zhang D., et al. Engineering IscB to develop highly efficient miniature editing tools in mammalian cells and embryos. Molecular Cell (2024).

  • 2024

    Wang X., Wu X., Tan B., et al. Allogeneic CD19-targeted CAR-T therapy in severe myositis and systemic sclerosis achieved durable remission and reversed extensive fibrotic damages. Cell (2024).

  • 2024

    Yang L., Huo Y., Wang M., et al. Engineering APOBEC3A deaminase for highly accurate and efficient base editing. Nature Chemical Biology (2024).

  • 2023

    Zhang, N., Liu, X., Qin, J., et al. LIGHT/TNFSF14 promotes CAR-T cell trafficking and cytotoxicity through reversing immunosuppressive tumor microenvironment. Molecular Therapy (2023).

  • 2023

    Chen, L., Hong, M., Luan, C., et al. Adenine transversion editors enable precise, efficient A·T-to-C?G base editing in mammalian cells and embryos. Nature Biotechnology (2023).

  • 2022

    Chen, L., Zhu, B., Ru, G., et al. Re-engineering the adenine deaminase TadA-8e for efficient and specific CRISPR-based cytosine base editing. Nature Biotechnology (2022).

  • 2022

    Chen, L., Zhang, S., Xue, N., et al. Engineering a precise adenine base editor with minimal bystander editing. Nature Chemical Biology (2022).

  • 2022

    Zhang, J., Hu, Y., Yang, J., et al. Non-viral, specifically targeted CAR-T cells achieve high safety and efficacy in B-NHL. Nature (2022).

    Recently, chimeric antigen receptor (CAR)-T cell therapy has shown great promise in treating haematological malignancies1–7 . However, CAR-T cell therapy currently has several limitations8–12. Here we successfully developed a two-in-one approach to generate non-viral, gene-specifc targeted CAR-T cells through CRISPR–Cas9. Using the optimized protocol, we demonstrated feasibility in a preclinical study by inserting an anti-CD19 CAR cassette into the AAVS1 safe-harbour locus. Furthermore, an innovative type of anti-CD19 CAR-T cell with PD1 integration was developed and showed superior ability to eradicate tumour cells in xenograft models. In adoptive therapy for relapsed/refractory aggressive B cell non-Hodgkin lymphoma (ClinicalTrials.gov, NCT04213469), we observed a high rate (87.5%) of complete remission and durable responses without serious adverse events in eight patients. Notably, these enhanced CAR-T cells were efective even at a low infusion dose and with a low percentage of CAR+ cells. Single-cell analysis showed that the electroporation method resulted in a high percentage of memory T cells in infusion products, and PD1 interference enhanced anti-tumour immune functions, further validating the advantages of non-viral, PD1-integrated CAR-T cells. Collectively, our results demonstrate the high safety and efcacy of non-viral, gene-specifc integrated CAR-T cells, thus providing an innovative technology for CAR-T cell therapy.
  • 2022

    Fu, B., Liao, J., Chen, S. et al. CRISPR–Cas9-mediated gene editing of the BCL11A enhancer for pediatric β0/β0 transfusion-dependent β-thalassemia. Nature Medicine (2022).

    Gene editing to disrupt the GATA1-binding site at the +58 BCL11A erythroid enhancer could induce γ-globin expression, which is a promising therapeutic strategy to alleviate β-hemoglobinopathy caused by HBB gene mutation. In the present study, we report the preliminary results of an ongoing phase 1/2 trial (NCT04211480) evaluating safety and efficacy of gene editing therapy in children with blood transfusion-dependent β-thalassemia (TDT). We transplanted BCL11A enhancer-edited, autologous, hematopoietic stem and progenitor cells into two children, one carrying the β0/β0 genotype, classified as the most severe type of TDT. Primary endpoints included engraftment, overall survival and incidence of adverse events (AEs). Both patients were clinically well with multilineage engraftment, and all AEs to date were considered unrelated to gene editing and resolved after treatment. Secondary endpoints included achieving transfusion independence, editing rate in bone marrow cells and change in hemoglobin (Hb) concentration. Both patients achieved transfusion independence for >18?months after treatment, and their Hb increased from 8.2 and 10.8?g?dl?1 at screening to 15.0 and 14.0?g?dl?1 at the last visit, respectively, with 85.46% and 89.48% editing persistence in bone marrow cells. Exploratory analysis of single-cell transcriptome and indel patterns in edited peripheral blood mononuclear cells showed no notable side effects of the therapy.
  • 2020

    Zhang, X., Zhu, B., Chen, L.?et al.?Dual base editor catalyzes both cytosine and adenine base conversions in human cells.?Nature Biotechnology (2020).

    Although base editors are useful tools for precise genome editing, current base editors can only convert either adenines or cytosines. We developed a dual adenine and cytosine base editor (A&C-BEmax) by fusing both deaminases with a Cas9 nickase to achieve C-to-T and A-to-G conversions at the same target site. Compared to single base editors, A&C-BEmax’s activity on adenines is slightly reduced, whereas activity on cytosines is higher and RNA off-target activity is substan- tially decreased.
  • 2020

    Zhang X., Chen L., Zhu B., et al. Increasing the efficiency and targeting range of cytidine base editors through fusion of a single-stranded DNA-binding protein domain. Nature Cell Biology (2020).

    Cytidine base editors are powerful genetic tools that catalyse cytidine to thymidine conversion at specific genomic loci, and further improvement of the editing range and efficiency is critical for their broader applications. Through insertion of a non-sequence-specific single-stranded DNA-binding domain from Rad51 protein between Cas9 nickase and the deaminases, serial hyper cytidine base editors were generated with substantially increased activity and an expanded editing window towards the protospacer adjacent motif in both cell lines and mouse embryos. Additionally, hyeA3A-BE4max selectively cata- lysed cytidine conversion in TC motifs with a broader editing range and much higher activity (up to 257-fold) compared with eA3A-BE4max. Moreover, hyeA3A-BE4max specifically generated a C-to-T conversion without inducing bystander mutations in the haemoglobin gamma gene promoter to mimic a naturally occurring genetic variant for amelioration of β-haemoglobinopathy, suggesting the therapeutic potential of the improved base editors.
  • 2020

    Zeng J, Wu Y, Ren C, Bauer DE, et al. Therapeutic base editing of human hematopoietic stem cells. Nature Medicine, 2020.

    Base editing by nucleotide deaminases linked to programmable DNA-binding proteins represents a promising approach to permanently remedy blood disorders, although its application in engrafting hematopoietic stem cells (HSCs) remains unexplored. Here we purified A3A (N57Q)-BE3 protein for ribonucleoprotein (RNP) electroporation of human peripheral blood (PB) mobilized CD34+ hematopoietic stem and progenitor cells (HSPCs). We observed frequent on-target cytosine base
Back to top
亚洲欧洲日产国码久在线| 久久这里只有精品视频9| 国产精品55夜色66夜色| 777午夜精品久久av蜜臀| 2021AAVV年本站提供91久久精品| 日韩欧美国产激情在线播放| 波多野结衣教师在线| 日本熟妇中文字幕三级| 日本日本乱码伦视频在线观看| 看免费5XXAAA毛片裸体| 国产精品美女久久久免费| 欧美日韩人妻精品一区二区三区| 直接观看黄网站免费| 亚洲中文字幕一区精品自拍| 无码h黄肉动漫在线观看999| 在线观看你懂的国产精品| 在线成h人视频网站免费观看| 91偷拍一区二区三区精品| 中文字幕无码免费久久| 久久丫精品国产亚洲AV| 一个人看的WWW日本高清视频| 波多野结衣乳巨码无在线观看| 老湿亚洲永久精品ww47| 人妻精品久久久久中文字幕| 国产精品久久久久久久AV大片| 国产熟女一区二区三区五月婷小说| 亚洲AV成人无码国产一区二区| 欧美国产亚洲精品a第一页| 亚洲av无码专区国产不乱码| 日韩精品无码观看视频免费| 欧美激情综合色综合啪啪五月| 精品国产污污免费网站入口在线看| 国产免费破外女真实出血视频| 高清欧美性猛交xxxx黑人猛交| 久久国产热这里只有精品| 欧美成人亚洲国产中文精品| 欧美黑人日韩三级破处女视频污片| 亚洲高清无码在线观看| 久久国产亚洲欧美久久| 亚洲毛片无码专区亚洲A片| 亚洲国产精品一区二区成人片不卡|